Efficient Synchronous Byzantine Consensus
نویسندگان
چکیده
We present new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The celebrated PBFT state machine replication protocol tolerates f Byzantine faults in an asynchronous setting using 3f +1 replicas, and has since been studied or deployed by numerous works. In this work, we improve the Byzantine fault tolerance threshold to n = 2f + 1 by utilizing a relaxed synchrony assumption. We present a synchronous state machine replication protocol that commits a decision every 3 rounds in the common case. The key challenge is to ensure quorum intersection at one honest replica. Our solution is to rely on the synchrony assumption to form a post-commit quorum of size 2f + 1, which intersects at f + 1 replicas with any pre-commit quorums of size f + 1. Our protocol also solves synchronous authenticated Byzantine agreement in expected 8 rounds. The best previous solution (Katz and Koo, 2006) requires expected 24 rounds. Our protocols may be applied to build Byzantine fault tolerant systems or improve cryptographic protocols such as cryptocurrencies when synchrony can be assumed.
منابع مشابه
Brief Announcement: A Leader-free Byzantine Consensus Algorithm
We consider the consensus problem in a partially synchronous system with Byzantine faults. In a distributed system of n processes, where each process has an initial value, Byzantine consensus is the problem of agreeing on a common value, even though some of the processes may fail in arbitrary, even malicious, ways. It is shown in [11] that — in a synchronous system — 3t + 1 processes are needed...
متن کاملA Leader-Free Byzantine Consensus Algorithm
The paper considers the consensus problem in a partially synchronous system with Byzantine faults. It turns out that, in the partially synchronous system, all deterministic algorithms that solve consensus with Byzantine faults are leader-based. This is not the case of benign faults, which raises the following fundamental question: is it possible to design a deterministic Byzantine consensus alg...
متن کاملUnifying Byzantine Consensus Algorithms with Weak Interactive Consistency
The paper considers the consensus problem in a partially synchronous system with Byzantine processes. In this context, the literature distinguishes authenticated Byzantine faults, where messages can be signed by the sending process (with the assumption that the signature cannot be forged by any other process), and Byzantine faults, where there is no mechanism for signatures (but the receiver of...
متن کاملExact Byzantine Consensus in Directed Graphs
For synchronous point-to-point n-node networks of undirected links, it has been previously shown that, to achieve consensus in presence of up to f Byzantine faults, the following two conditions are together necessary and sufficient: (i) n ≥ 3f + 1 and (ii) network connectivity greater than 2f . The first condition, that is, n ≥ 3f + 1, is known to be necessary for directed graphs as well. On th...
متن کاملByzantine Consensus with Few Synchronous Links
This paper tackles the consensus problem in asynchronous systems prone to byzantine failures. One way to circumvent the FLP impossibility result consists in adding synchrony assumptions (deterministic solution). In the context of crash failures (at most t processes may crash), the weakest partially synchronous system model assumes at least one correct process with outgoing links that eventually...
متن کامل